Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines.
نویسندگان
چکیده
The differences in path length of axons from the anteroventral cochlear nuclei (AVCN) to the medial superior olive (MSO) are thought to provide the anatomical substrate for the computation of interaural time differences (ITD). We made small injections of biotinylated dextran into the AVCN that produced intracellular-like filling of axons. This permitted three-dimensional reconstructions of individual axons and measurements of axonal length to individual terminals in MSO. Some axons that innervated the contralateral MSO had collaterals with lengths that were graded in the rostrocaudal direction with shorter collaterals innervating more rostral parts of MSO and longer collaterals innervating more caudal parts of MSO. These could innervate all or part of the length of the MSO. Other axons had restricted terminal fields comparable to the size of a single dendritic tree in the MSO. In the ipsilateral MSO, some axons had a reverse, but less steep, gradient in axonal length with greater axonal length associated with more rostral locations; others had restricted terminal fields. Thus, the computation of ITDs is based on gradients of axonal length in both the contralateral and ipsilateral MSO, and these gradients may account for a large part of the range of ITDs encoded by the MSO. Other factors may be involved in the computation of ITDs to compensate for differences between axons.
منابع مشابه
Axonal branching patterns as sources of delay in the mammalian auditory brainstem: a re-examination.
In models of temporal processing, time delays incurred by axonal propagation of action potentials play a prominent role. A pre-eminent model of temporal processing in audition is the binaural model of Jeffress (1948), which has dominated theories regarding our acute sensitivity to interaural time differences (ITDs). In Jeffress' model, a binaural cell is maximally active when the ITD is compens...
متن کاملFormation and maturation of the calyx of Held.
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the cal...
متن کاملDevelopmental Changes in Auditory Brainstem Circuitry Anatomical Refinement in the Projection from the Anteroventral Cochlear Nucleus to the Lateral Superior Olive
In mammals, the basic computations required for azimuthal sound localization are performed by a group of auditory brainstem nuclei known as the superior olivary complex (SOC). The lateral superior olive (LSO), in the SOC, aids in sound localization by computing intensity differences between sounds arriving at the two ears. It does this by comparing excitatory input from the ipsilateral anterove...
متن کاملDecoding the auditory corticofugal systems q Jeffery
The status of the organization of the auditory corticofugal systems is summarized. These are among the largest pathways in the brain, with descending connections to auditory and non-auditory thalamic, midbrain, and medullary regions. Auditory corticofugal influence thus reaches sites immediately presynaptic to the cortex, sites remote from the cortex, as in periolivary regions that may have a c...
متن کاملMonaural interaction of excitation and inhibition in the medial superior olive of the mustached bat: an adaptation for biosonar.
In most mammals, the superior olive is the first stage for binaural interaction. Neurons in the medial superior olive (MSO) receive excitatory input from both ears and are sensitive to interaural time or phase differences of low-frequency sounds. The mustached bat (Pteronotus parnellii parnellii), a small echolocating species with high-frequency hearing, probably does not use interaural time or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 8 شماره
صفحات -
تاریخ انتشار 1999